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LE3TER TO THE EDITOR 

' #  

Ordering of microscopic Dzyaloshinskii-Moriya vectors and 
static properties of spin glasses 

Sergey N Lyakhiieti 
Institute of Metal Physics, 36 Vemadsky Stra t ,  251680 Kiev-142, Ukraine 

ALslmt The mean-field theory of the Dyaloshinskii-Moriya (OM) interadion in spin 
glasses which is b a d  on the eoncept of the eigenmodcs of the exchange integrals matrix 
is considered. There are additional degrees of freedom, sensitive to an external magnelic 
field, connected with ordering of microscopic DM vectors below lhe freezing temperature. 
They contribute to the magnetic susceptibility, and the macroscopical unidirectional 
anisompy and modify the H-T phase diagram. 

The Dzyaloshmskii-Moriya interaction [1,2] has been well studied in crystalline 
magnets. However, there are numerous experimental [3,4] and theoretical [5,6] 
papers (see also references in [7]) demonstrating the importance of this interaction in 
spin glasses (sG). This letter describes a new mean-field approach accounting for the 
Dzyaloshmski-Moriya (DM) interaction and its influence on some static properties 

Beginning from the first Anderson paper [g], a very fruitful approach for the 
description of the transition into the SG state was being developed by several 
authors [9-121. This theory formulates the phase transition problem in terms 
of eigenmodes of the exchange integrals matrix .Ii,. Such a representation is 
advantageous because it diagonalizes the main Heisenberg exchange interaction: 
- Cik Ji ,Si  . S, - -E, J,LZ,. Here L, = uioS; is the eigenmode 
corresponding to the eigenvalue J ,  of the matrix Jib, the spatial distribution of 
the wave function uiu defines the character (localized or extended) of the eigenmode 
a, and Si is the spin (classical vector) at site i. In the calculations of a susceptibility 
in [9,12] the eigenmodes CY are treated as magnetization vectors. However, due to the 
randomness of signs of the exchange matrix components Jib, the signs of the values 
of uio are also random. Therefore, the mode L, is the vector of antifemmagnetism 
rather than the magnetization vector. 

In this theory the very complicated non-hear problem of the intermode 
interactions has arisen-these may substantially change the initial spectrum of the 
non-interacting modes. We would like to mention here two different pictures of 
the phase transition into the SG state which are considered to be clearer upon the 
application of this approach. 

Hertz et ai [lo] have shown, using the Hartree-Fock approximation, that for 
decreasing temperature T the intermode interactions suppress the condensation of 
the localized modes. Only one extended mode condenses when T reaches the mobility 
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IA8 Letter to the Editor 

edge To (see also [ll] and section VIE2 in [I), but marginal (logarithmically 
divergent) fluctuations can desmy such a phase transition. However, one cannot 
be sure that this result will not be changed beyond the scope of the Hartree-hck 
approximation. 

In this letter we shall examine the second picture of the cascade of the local phase 
transitions outlined firstly in [SI and described in detail by Hertz [9,12]. Here the 
suppression of the condensation is not so rigid and on reducing T the condensation 
starts from the localized modes with the largest eigenvalues J,. The already 
condensed modes suppress the potentially soft modes and hence their renormalized 
critical temperatures of the condensation T, are lower than J,. This picture seems 
to be rather relevant to experiment (see [9,12]). 

We consider the simplest pair DM interaction 

where Dij  is the DM vector (see microscopic calculations of Dij  in [2,5,13]). Here 
we assume that the vector D i j  is independent of spin variables. 

In crystalline weak ferromagnets the directions of the microscopic vectors Dij  
are dictated by the crystal symmetry. The macroscopic DM field forming the weak 
magnetic momentum is directed along some highly symmetrical crystalline axes. In 
contrast, in SO the orientation and length of the vector Dij have random character. 

There is a property which is principal for our consideration: Ihe micrarcopicul DM 
vector i s  defvled up to U sign, i.e. Di j  = +D!j or Dij=-D".,  where D!, is some 
k e d  vector (see below). This property is well known in crystall$e weak ferromagnets. 
For example, the sign of the DM field in the weak ferromagnet with two sublattices 
depends on the choice of the directions of ferm- and antiferromagnetic vectors [14]. 

With the basis of the eigenmodes L, the formula (1) has the form 

Here D,@ = Cij Di ju i ,u jp .  Let us make the following assumption which leads to 
essential simplification but does not restrict the generality of the consideration: the 
magnetization vector M I ( l / f l )  Ci Si is one of the extended eigenmodes, Le. 
M I L,  and U;,, = I / a ,  where N is the total number of spins. This is possible 
if the sum 3 = xi Ji j  is independent of the index j .  Such a condition is quite 
reasonable for the homogeneous SG. Then in (2) we may select the terms containing 
the magnetization vector M 

where D ,  = ( l / f l )  Cij Di j  uio.  The vector H,, = E, [L, x D,] has the 
meaning of the macroscopic DM field or the field of the unidirectional magnetic 
anisotropy [5-71. According to our model, the DM field ITDM arises as a result of 
a summation of the microscopic random vectors Dij ordered below the freezing 
temperature. 

Let us consider the isotropic SG and fuc the directions of the already condensed 
modes L ,  below T,. We can always take such directions of the vectors Dij  when the 
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value H6M = H,, . x reaches a maximum; here x is a unit vector along the external 
field H = H r .  We shall label these vectors with the index 'W Dij I DC. There 
is thermal orientational disorder at finite temperature T, and we have to substitute 
in (3) the average vector ( D i j )  = pijDYj - (1 - pij)D$'j instead of D i j .  Here pjj 
is the probability that the vector Dij  = +D& and (1  - p i j )  is the probability that 
Dij = -Di". We do not assume here a special interaction between the different 
vectors Dij .  Due to this the free energy, connected with the DM interaction (3), may 
be written in the general form fDM(Z, ,ui j ,M, T) = wbM - TS, where S is the 
configurational entropy which is calculated in the standard way: 

s = - ( ~ / ~ ) C [ P ; ~ I ~ P ~ ~  + ( ~ - - P ; ~ ) I ~ ( ~ - P ; ~ ) I .  
i j  

Introducing the new variables uij = 1 - 2pij we obtain 

fDM = -( l /dF)M . u;j [Z, x Dyj] 
i j  a 

+ (1/4)~C {In[(l- U:, )] + uij In[(l+ uij)/(l - uij )] } . (4) 

The variables uij characterize degrees of freedom related to the ordering of the 
microscopic DM vectors. We would like to emphasize that these variables can be 
governed by the external magnetic field because of the direct interaction with the 
magnetization. 

In the final formula for the total free energy of the SG in the magnetic field we 
write terms containing the magnetization M in the explicit form 

i j  

f = f"(L,,T) + (M2/2x) + (1/2) (Ci1)M% + Ci2)(M. La)2) 
o! 

+ f , M ( L n ,  g;j 3 M ,  T )  - M . If. (5)  

Here x is a susceptibility, x-' a (T + J )  (.f has the sense of a paramagnetic Curie 
temperature), and 8) and CL*) are positive constants determining the intermode 
interactions: &'),(&') a xi uh.  Due to the randomness of signs of uia and small 
overlaps of localized modes we have neglected in (5) the terms proportional to the 
factors xi uia, xi uiauip ,  xi u imui~u i ,  (a # p # y) etc (for details see [12]). 
Such an expansion (in M and L,) is similar to the expansion of the free energy in 
the vectors of ferro- and antiferromagnetism for usual antiferromagnets 114, IS]. 

The first term fo includes: (i) the largest exchange interaction, (ii) the DM 
interaction between modes L, which was excluded from (3) (it is much less than 
the exchange interaction), and (iii) intermode interactions (see [lo, 121). The above- 
mentioned problem of the phase transition theory is connected with this term which 
describes the condensation of eigenmodes. However, we may avoid this problem and 
there is no need to go into the details of this term or to examine it thoroughly, since 
we are interested only in that part of the DM interaction which is sensitive to H. 

Let us analyse the process of magnetization. For zero-field cooling (ZFC) the 
equilibrium values = 0. This follows from the equation af/auij = 0 at M = 0 
and means that below T, the vectors D i j  are frozen chaotically and the resulting 
macroscopic DM field is absent. 
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There is an important question of the relaxation of the DM field which we omit 
here since it needs special consideration In this letter we calculate the ZFC linear 
(initial) susceptibility xPC under the assumption that the values uij are really frozen 
on switching on the magnetic field and that there is no relaxation of the DM field. 
From the equality a f / a M  = 0 at uYj = 0 it is easy to obtain 

* 

Here C, = C$1’+C~2)(l~-z)2, 1: = L:/IL:I, and L: are the equilibrium eigenmodes 
obtained from the equations a fo /aL ,  = 0 (in a calculation of linear susceptibility 
the terms of second order in W may be neglected). 

For slow quasistatic field cooling (FC) magnetization, the variables uij reach their 
equilibrium values 

In the weak field tanhz zz: I, and thus uyj a H. Using (5) with the equilibrium value 
uyj we may find the FC susceptibility 

There are some consequences of equations (6) and (8). The deviation from the Curie 
law ‘yl o( T+constant’ and the difference between xmc and xFC on lowering T 
start at the temperature at which the first eigenmodes are condensed. This deviation 
increases due to the growth of the already condensed modes and the condensation 
of the new modes. This picture gives a natural explanation of the slightly rounded 
cusp in the temperature dependence of x, which appears in some region of T around 
the mobility edge Tu [9]. where the true long-range order exists. The formula (8) 
shows that xzFc is always less than xFc This inequality clearly displays the fact 
that the state of SG essentially depends on the thermodynamic path of the so sample 
(‘magnetic history’). It can be seen that there are no thermodynamic equilibria in the 
ZFC state on switching on the field, unlike what is found in the FC state. This verifies 
the suggestion that under field cooling the SG reaches the true equilibrium state (see 

It is reasonable to assume that there are no correlations between the directions 
of the different eigcnmodes as well as between the directions of L, and Di j .  The 
averaging over orientations gives 

[Q. 

* 

where vu = ( 4 / 9 N T )  Ci j  (Dyjui,)2.  The formulae (6) and (8) may also be 
used when the picture of the phase transition described in [lo] applies, i.e. when 
at T = Tt = Tu only one extended mode Le condenses. In rough estimates we may 
drop summation over CY and replace L,  by Le. 
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After the FC process there arises a macroscopic field of unidirectional anisotropy 
(the DM field) directed along z 

HiM = ( l / f i ) c u i , [ L ,  x Dfj]zoyj. (10) 
i j  

At low T and for strong H the variables 4j -t 1 and hence the field H& reaches 
a maximum (we do not make more detailed numerical estimates of H&, here; they 
will be presented elsewhere). 

There is an important question of how the DM interaction could modify the H-T 
phase diagram of the SG. For a weak field -9 that part of the free energy that depends 
on La can be expressed in the following form 

f ( L , R , T )  = f o ( L a , T ) + ( I / 2 ) ( ~ ~ c ) * C ( C a - - , ) L ~ H 2  (11) 

where we replaced M by its equilibrium value ,ypcH. 'Ib analyse of the H-T diagram 
we must detail the term fo in (11). Being aware of all the dBculties described above, 
it is nevertheless reasonable to examine the simplest mean-field approach. The first 
part in the usual Landau-type expansion of the fu near T, [S, lo], quadratic in A,, 
is: aC,(T- T,)L%, where the constant a > 0. Then from (11) one can see that 
the shift of the effective temperature of the ath mode condensation in the magnetic 
field: T, - T a ( H )  is equal to (x&/2a)(Ca - v a ) H Z .  This means that the line of 
the SG transition on the H-T phase diagram at small values of the field follows the 
law & - T , ( N )  0: K H 2 ,  as well as the Gabay-'Ibulouse l i e  [16]. In our approach 
the nature of the T, shift and of the phase transition l i e  is the same as the nature 
of the NCel temperature shift and of the corresponding line in antiferromagnets 
[14]. Usually, Tf(H) falls with increasing N. This corresponds to K > 0 in our 
equations. But when the DM interaction is not small and C, < v,, the constant K 
may be negative. This leads to the anomalous behaviour of the phase transition line, 
i.e. &(If) grows with increasing H 1171. 

In conclusion, some remarks are in order. It is to be noted that apart from 
the effects of non-ergodicity and irreversibility in SG, there exists a close similarity 
between the static behaviour of SG and antiferromagnets. For example, in both cases 
an interpretation of the cusp in the X(T)-dependence is the same. Like in SG, 
in antiferromagnets the magnetization is not a soft mode. Soft antiferromagnetic 
modes which arise below the N6el temperature and grow with a decrease of T are 
not thermodynamically conjugate to El, but they essentially change the response 
to the magnetic field and this causes the cusp [14]. The similarity has a deeper 
reason dictated by the proper nature of the SG state which needs a predominance 
of antiferromagnetic couplings over ferromagnetic ones. It looks as if the SG is the 
antiferromagnet with an infinite number of magnetic sublattices with different spatial 
distributions. Our approach was based on a strong assumption. We considered the 
microscopic DM vectors Dij  to be independent. But it is impossible to exclude 
some correlation between the neighbouring vectors Anyway, only microscopic 
consideration (separately for metallic and non-metallic SG) should clarify this point. 

If this model is valid, there is an attractive possibility of implementing the Hopfield 
model of associative memory [18] in the real SG. The appearance of the memory in 
our case will be connected not with an arrangement of the exchange integrals, but 
with ordering of the microscopic DM vectors. 

a 
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